Nuestro objetivo es desarrollar diversas publicaciones científicas que destaquen nuestro compromiso con la conservación de nuestros recursos marinos.
La mayoría de las publicaciones están disponibles gratuitamente en nuestro sitio web.
2022
Arias-Gonzalez, J. E.; Baums, I. B.; Banaszak, A. T.; C. Prada, S. Rossi; E.A. Hernandez-Delgado,; Rinkevich., B.
Editorial: Coral Reef Restoration in a Changing World: Science-Based Solutions Journal Article
In: Frontiers in marine Science, vol. 9, 2022.
Abstract | Links | BibTeX | Tags: adaptive evolution, Climate change, Coastal Resilience, husbandry, Management, modeling, monitoring, propagation, restauration
@article{Arias-González2022,
title = {Editorial: Coral Reef Restoration in a Changing World: Science-Based Solutions},
author = {Arias-Gonzalez, J.E. and I.B. Baums and A.T. Banaszak and C. Prada, S. Rossi and E.A. Hernandez-Delgado, and B. Rinkevich.},
editor = {Raquel Peixoto},
url = {https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.919603/full},
doi = {https://doi.org/10.3389/fmars.2022.919603},
year = {2022},
date = {2022-05-23},
urldate = {2022-05-23},
journal = {Frontiers in marine Science},
volume = {9},
abstract = {The collection explores diverse themes, including propagation and husbandry, improved outplanting success, microfragmentation techniques, assisted evolution, larval recruitment, species ecology, and advanced monitoring and modeling tools. Key findings highlight innovative approaches such as universal and goal-based performance metrics for assessing restoration success, the role of sea urchins and fish assemblages in reef recovery, and selective breeding for heat-tolerant corals. Studies also emphasize the importance of genetic diversity, substrate selection, and regional environmental gradients to enhance restoration outcomes. Advanced technologies, like 3D scanning and imaging spectroscopy, alongside data management tools such as the Coral Sample Registry, are showcased as critical for improving restoration scalability and effectiveness. This comprehensive effort underscores the rapid evolution of coral reef restoration as a vital field to preserve ecosystem functionality amidst climate change challenges, offering both general and region-specific solutions to foster resilient reefs worldwide.},
keywords = {adaptive evolution, Climate change, Coastal Resilience, husbandry, Management, modeling, monitoring, propagation, restauration},
pubstate = {published},
tppubtype = {article}
}
2020
Hernández-Delgado, E. A.; Toledo-Hernández, C.; Ruíz-Díaz, C. P.; Gómez-Andújar, N.; Medina-Muñiz, J. L.; Canals-Silander, M. F.; Suleimán-Ramos, S. E.
Hurricane Impacts and the Resilience of the Invasive Sea Vine, Halophila stipulacea: a Case Study from Puerto Rico. Journal Article
In: Estuaries and Coasts, vol. 43, pp. 1263–1283, 2020.
Abstract | Links | BibTeX | Tags: Coast, Coastal Erosion, Coastal Resilience, Halophila stipulacea, Hurricane Impacts, Hurricane Irma, Hurricane Maria, Hurricanes, Puerto Rico, Resilience
@article{Hernández-Delgado2020,
title = {Hurricane Impacts and the Resilience of the Invasive Sea Vine, \textit{Halophila stipulacea}: a Case Study from Puerto Rico.},
author = {E. A. Hernández-Delgado and C. Toledo-Hernández and C. P. Ruíz-Díaz and N. Gómez-Andújar and J. L. Medina-Muñiz and M. F. Canals-Silander and S. E. Suleimán-Ramos},
url = {https://link.springer.com/article/10.1007/s12237-019-00673-4
},
doi = {https://doi.org/10.1007/s12237-019-00673-4},
year = {2020},
date = {2020-01-08},
urldate = {2020-01-08},
journal = {Estuaries and Coasts},
volume = {43},
pages = {1263–1283},
abstract = {Category five hurricanes Irma and María (September 2017) caused significant damage to shallow seagrass communities across Puerto Rico. The magnitude and spatial extent of hurricane impacts on representative seagrass habitats of Culebra Island were addressed using a combination of random photo-quadrats and before–after hurricanes GIS-based imagery analyses. There was a significant loss of shallow seagrasses across all nine surveyed locations. Most of the documented impacts were associated with sediment bedload (horizontal transport), which resulted in burial and suffocation. There was also localized physical disruption of the seagrass habitat matrix across locations exposed to stronger wave action, creating major scars and exposing below-ground structure to further disintegration by future storm events. Displaced coral rubble also caused seagrass burial. Aerial imagery analyses (2007, 2010, 2017) showed a significant decline in seagrass percent cover. Seagrass decline was positively correlated with wave exposure (p < 0.05). Seagrass cover, density, and changes in benthic community structure were documented across five of the surveyed locations during 2018, and these data were further compared to data collected in 2004 at these same sites. There was a decline in percent seagrass cover and density and a change in benthic community structure favoring habitat homogenization. A remarkable finding was the rapid recovery, expansion, and increased localized dominance of the invasive seagrass, Halophila stipulacea. This was particularly evident in areas impacted by recurrent land-based runoff pulses, anchoring, sediment resuspension due to navigation, trampling or by the accumulation of decaying Sargassum mats. Hurricanes triggered a localized shift in marine vegetation, favoring the invasion of H. stipulacea, with potentially significant consequences on ecosystem resilience and on the ability of native in seagrasses to persist and adapt to projected climate change impacts.},
keywords = {Coast, Coastal Erosion, Coastal Resilience, Halophila stipulacea, Hurricane Impacts, Hurricane Irma, Hurricane Maria, Hurricanes, Puerto Rico, Resilience},
pubstate = {published},
tppubtype = {article}
}
2018
Pérez-Pagán, Birla Sofía; Mercado-Molina, Alex E.
Evaluation of the effectiveness of 3D-printed corals to attract coral reef fish at Tamarindo Reef, Culebra, Puerto Rico. Journal Article
In: Conservation Evidence, vol. 15, pp. 43-47, 2018, ISSN: 1758-2067.
Abstract | Links | BibTeX | Tags: 3D-printed corals, Acropora cervicornis, Caribbean, Caribbean Coral Reefs, Caribbean Sea, Coastal Resilience, Conservation Biology, Coral, Coral Reef Ecology, Coral Reef Ecosystems, coral reefs
@article{Pérez-Pagán2018,
title = {Evaluation of the effectiveness of 3D-printed corals to attract coral reef fish at Tamarindo Reef, Culebra, Puerto Rico.},
author = {Birla Sofía Pérez-Pagán and Alex E. Mercado-Molina},
url = {https://www.conservationevidence.com/individual-study/6858
},
issn = {1758-2067},
year = {2018},
date = {2018-06-11},
urldate = {2018-06-11},
journal = {Conservation Evidence},
volume = {15},
pages = {43-47},
abstract = {The development of artificial corals using 3D-printing technology has been proposed as an alternative to aid the recovery of fish populations in degraded reefs. However, no study has empirically evaluated the potential of such artificial corals to attract fish to reef patches. We conducted an experiment to determine whether the number of fish associated with natural and 3D-printed corals differs significantly. The 3D-printed artificial corals mimicked the morphology of staghorn coral Acropora cervicornis, whose branches serve as habitat for many fish species. There is evidence indicating that fish abundance increases with habitat complexity, but no specific evidence relating to A. cervicornis. Therefore, we also investigated whether the structural complexity of both natural and artificial corals affected their effectiveness to attract fish. We found that the number of fish associated with artificial and natural corals was not significantly different. However, irrespective of coral type, fish were more abundant in corals with the highest levels of complexity. Our findings suggest that 3D-printed corals can serve as a complementary tool to improve the ecosystem function of degraded coral reefs.},
keywords = {3D-printed corals, Acropora cervicornis, Caribbean, Caribbean Coral Reefs, Caribbean Sea, Coastal Resilience, Conservation Biology, Coral, Coral Reef Ecology, Coral Reef Ecosystems, coral reefs},
pubstate = {published},
tppubtype = {article}
}
2017
Hernández-Delgado, Edwin A.; Rosado-Matías, Bernard J.
In: Annals of Marine Biology and Research, vol. 4, no. 1, pp. 1-17, 2017.
Abstract | Links | BibTeX | Tags: Beach erosion, Beach renourishment, Climate change, Coastal Erosion, Coastal Resilience, Conservation Biology, Coral, Coral Reef Ecology, Coral Reef Ecosystems, coral reefs, Environmental Sustainability, Wave Energy
@article{Hernández-Delgado2017b,
title = {Long-Lasting Impacts of Beach Renourishment on nearshore Urban Coral Reefs: a Glimpse of Future Impacts of Shoreline Erosion, Climate Change and Sea Level Rise},
author = {Edwin A. Hernández-Delgado and Bernard J. Rosado-Matías},
url = {https://sampr.org/wp-content/uploads/2024/01/Long_Lasting_Impacts_of_Beach_Renourishm.pdf
https://www.researchgate.net/publication/318316763_Long-Lasting_Impacts_of_Beach_Renourishment_on_Near_shore_Urban_Coral_Reefs_a_Glimpse_of_Future_Impacts_of_Shoreline_Erosion_Climate_Change_and_Sea_Level_Rise
},
year = {2017},
date = {2017-05-05},
urldate = {2017-05-05},
journal = {Annals of Marine Biology and Research},
volume = {4},
number = {1},
pages = {1-17},
abstract = {Urban shoreline erosion mitigation through beach renourishment has often been dismissed as environmentally insignificant. Given predicted impacts of sea level rise (SLR) and increased shoreline erosion, such activities might become a common practice in the future. But its long-term impacts on adjacent coral reefs have remained poorly documented. Benthic community trajectories were addressed during a period of twelve years across a spatial gradient of sediment burial impacts by beach renourishment on a high-energy urban coral reef at La Marginal Beach, Arecibo, Puerto Rico. Impacts associated to beach renourishment, followed by long-term, slowly-evolving impacts associated to sediment bedload, increased turbidity, increased Arecibo River streamflow, urban polluted runoff discharges, high particulate organic carbon (POC) concentration, and coral mortality following massive coral bleaching in 2005 were
addressed through long-term monitoring. There was an initial catastrophic loss in coral species richness, diversity index and percent living coral cover, and a rapid regime shift favoring dominance by macroalgae and other non-reef building taxa. Long-term chronic impacts arrested high impact sites to an early successional stage, and drove moderate and low impact sites to a similar stage of very low species diversity, colony abundance and reef growth. Such chronic changes in community trajectories represent a glimpse into potential future impacts of shoreline erosion, sediment bedload, increasing turbidity and coastal water quality decline associated to SLR. The combination of chronic coral reef decline resulting from beach renourishment, coastal pollution, turbidity, and sediment bedload may have critical long-term ecological implications for urban coral reef resilience, functions and benefits.},
keywords = {Beach erosion, Beach renourishment, Climate change, Coastal Erosion, Coastal Resilience, Conservation Biology, Coral, Coral Reef Ecology, Coral Reef Ecosystems, coral reefs, Environmental Sustainability, Wave Energy},
pubstate = {published},
tppubtype = {article}
}
addressed through long-term monitoring. There was an initial catastrophic loss in coral species richness, diversity index and percent living coral cover, and a rapid regime shift favoring dominance by macroalgae and other non-reef building taxa. Long-term chronic impacts arrested high impact sites to an early successional stage, and drove moderate and low impact sites to a similar stage of very low species diversity, colony abundance and reef growth. Such chronic changes in community trajectories represent a glimpse into potential future impacts of shoreline erosion, sediment bedload, increasing turbidity and coastal water quality decline associated to SLR. The combination of chronic coral reef decline resulting from beach renourishment, coastal pollution, turbidity, and sediment bedload may have critical long-term ecological implications for urban coral reef resilience, functions and benefits.
