Nuestro objetivo es desarrollar diversas publicaciones científicas que destaquen nuestro compromiso con la conservación de nuestros recursos marinos.
La mayoría de las publicaciones están disponibles gratuitamente en nuestro sitio web.
2017
Hernández-Delgado, Edwin A.; Rosado-Matías, Bernard J.
In: Annals of Marine Biology and Research, vol. 4, no. 1, pp. 1-17, 2017.
Abstract | Links | BibTeX | Tags: Beach erosion, Beach renourishment, Climate change, Coastal Erosion, Coastal Resilience, Conservation Biology, Coral, Coral Reef Ecology, Coral Reef Ecosystems, coral reefs, Environmental Sustainability, Wave Energy
@article{Hernández-Delgado2017b,
title = {Long-Lasting Impacts of Beach Renourishment on nearshore Urban Coral Reefs: a Glimpse of Future Impacts of Shoreline Erosion, Climate Change and Sea Level Rise},
author = {Edwin A. Hernández-Delgado and Bernard J. Rosado-Matías},
url = {https://sampr.org/wp-content/uploads/2024/01/Long_Lasting_Impacts_of_Beach_Renourishm.pdf
https://www.researchgate.net/publication/318316763_Long-Lasting_Impacts_of_Beach_Renourishment_on_Near_shore_Urban_Coral_Reefs_a_Glimpse_of_Future_Impacts_of_Shoreline_Erosion_Climate_Change_and_Sea_Level_Rise
},
year = {2017},
date = {2017-05-05},
urldate = {2017-05-05},
journal = {Annals of Marine Biology and Research},
volume = {4},
number = {1},
pages = {1-17},
abstract = {Urban shoreline erosion mitigation through beach renourishment has often been dismissed as environmentally insignificant. Given predicted impacts of sea level rise (SLR) and increased shoreline erosion, such activities might become a common practice in the future. But its long-term impacts on adjacent coral reefs have remained poorly documented. Benthic community trajectories were addressed during a period of twelve years across a spatial gradient of sediment burial impacts by beach renourishment on a high-energy urban coral reef at La Marginal Beach, Arecibo, Puerto Rico. Impacts associated to beach renourishment, followed by long-term, slowly-evolving impacts associated to sediment bedload, increased turbidity, increased Arecibo River streamflow, urban polluted runoff discharges, high particulate organic carbon (POC) concentration, and coral mortality following massive coral bleaching in 2005 were
addressed through long-term monitoring. There was an initial catastrophic loss in coral species richness, diversity index and percent living coral cover, and a rapid regime shift favoring dominance by macroalgae and other non-reef building taxa. Long-term chronic impacts arrested high impact sites to an early successional stage, and drove moderate and low impact sites to a similar stage of very low species diversity, colony abundance and reef growth. Such chronic changes in community trajectories represent a glimpse into potential future impacts of shoreline erosion, sediment bedload, increasing turbidity and coastal water quality decline associated to SLR. The combination of chronic coral reef decline resulting from beach renourishment, coastal pollution, turbidity, and sediment bedload may have critical long-term ecological implications for urban coral reef resilience, functions and benefits.},
keywords = {Beach erosion, Beach renourishment, Climate change, Coastal Erosion, Coastal Resilience, Conservation Biology, Coral, Coral Reef Ecology, Coral Reef Ecosystems, coral reefs, Environmental Sustainability, Wave Energy},
pubstate = {published},
tppubtype = {article}
}
Urban shoreline erosion mitigation through beach renourishment has often been dismissed as environmentally insignificant. Given predicted impacts of sea level rise (SLR) and increased shoreline erosion, such activities might become a common practice in the future. But its long-term impacts on adjacent coral reefs have remained poorly documented. Benthic community trajectories were addressed during a period of twelve years across a spatial gradient of sediment burial impacts by beach renourishment on a high-energy urban coral reef at La Marginal Beach, Arecibo, Puerto Rico. Impacts associated to beach renourishment, followed by long-term, slowly-evolving impacts associated to sediment bedload, increased turbidity, increased Arecibo River streamflow, urban polluted runoff discharges, high particulate organic carbon (POC) concentration, and coral mortality following massive coral bleaching in 2005 were
addressed through long-term monitoring. There was an initial catastrophic loss in coral species richness, diversity index and percent living coral cover, and a rapid regime shift favoring dominance by macroalgae and other non-reef building taxa. Long-term chronic impacts arrested high impact sites to an early successional stage, and drove moderate and low impact sites to a similar stage of very low species diversity, colony abundance and reef growth. Such chronic changes in community trajectories represent a glimpse into potential future impacts of shoreline erosion, sediment bedload, increasing turbidity and coastal water quality decline associated to SLR. The combination of chronic coral reef decline resulting from beach renourishment, coastal pollution, turbidity, and sediment bedload may have critical long-term ecological implications for urban coral reef resilience, functions and benefits.
addressed through long-term monitoring. There was an initial catastrophic loss in coral species richness, diversity index and percent living coral cover, and a rapid regime shift favoring dominance by macroalgae and other non-reef building taxa. Long-term chronic impacts arrested high impact sites to an early successional stage, and drove moderate and low impact sites to a similar stage of very low species diversity, colony abundance and reef growth. Such chronic changes in community trajectories represent a glimpse into potential future impacts of shoreline erosion, sediment bedload, increasing turbidity and coastal water quality decline associated to SLR. The combination of chronic coral reef decline resulting from beach renourishment, coastal pollution, turbidity, and sediment bedload may have critical long-term ecological implications for urban coral reef resilience, functions and benefits.
