Nuestro objetivo es desarrollar diversas publicaciones científicas que destaquen nuestro compromiso con la conservación de nuestros recursos marinos.
La mayoría de las publicaciones están disponibles gratuitamente en nuestro sitio web.
2019
Weil, E; Hernández-Delgado, EA; Gonzalez, M; Williams, S; Suleimán-Ramos, S; Figuerola, M; Metz-Estrella, T
Spread of the new coral disease “SCTLD” into the Caribbean: implications for Puerto Rico. Journal Article
In: Reef Encounter, vol. 34, no. 1, pp. 38-43, 2019.
Abstract | Links | BibTeX | Tags: biodiversity, biomass, Caribbean, communities, Coral, coral diseases, coral reefs, diversity, Puerto Rico, reef, reefs
@article{Weil2019,
title = {Spread of the new coral disease “SCTLD” into the Caribbean: implications for Puerto Rico.},
author = {E Weil and EA Hernández-Delgado and M Gonzalez and S Williams and S Suleimán-Ramos and M Figuerola and T Metz-Estrella},
url = {https://www.researchgate.net/publication/342477916_REEF_ENCOUNTER_Spread_of_the_new_coral_disease_SCTLD_into_the_Caribbean_implications_for_Puerto_Rico
https://www.agrra.org/wp-content/uploads/2020/08/Weil-et-al.-2020-Reef-Encounter.pdf
https://sampr.org/wp-content/uploads/2024/01/Spread-of-the-new-coral-disease-SCTLD-into-the-Caribbean-implications-for-Puerto-Rico.pdf
},
year = {2019},
date = {2019-12-01},
urldate = {2019-12-01},
journal = {Reef Encounter},
volume = {34},
number = {1},
pages = {38-43},
abstract = {The ongoing deterioration and significant decline in live coral cover and diversity in coral reef communities
worldwide is strongly associated with increasing water temperatures linked to Global Climate Change, aided by
anthropogenic activities (Harvell et al. 2004, 2007, 2009; Weil and Rogers 2011; Maynard et al. 2016; Woodley et al.
2016). In the Wider Caribbean, major community structure and function decline was marked by two region-wide,
concurrent, highly virulent disease epizootics in the early 1980’s. These events almost wiped out two foundational
scleractinian species (Acropora palmata and A. cervicornis), and the keystone sea urchin Diadema antillarum. White
band disease (WBD) affected the acroporids and was caused by a complex of vibrio bacteria (Gil-Agudelo et al. 2006).
The Diadema mass mortality had all the trademark characteristics of a virulent, transmissible, bacterial or viral
infection, but the putative pathogen (pathogens) was never identified (Lessios 2016). Populations of both acroporids
and sea urchins suffered over 95% mortalities throughout the wider Caribbean (Gladfelter 1982; Lessios et al. 1984a,b;
Aronson and Precht 2001; Lessios 2016), followed by a cascade of ecological consequences (significant loss of live
coral cover, primary productivity, spatial complexity, biodiversity and fecundity; loss of ecological functions, increase
in algal cover and biomass, etc.), ending in a shift from coral- to algal-dominated communities and the loss of
ecological services to other tropical marine communities and to human beings (Aronson and Precht 2001; Weil and
Rogers 2011). Several other disease-induced mass mortalities of other cnidarians, as well as of massive, plate and
nodular reef-building genera, have in the last 30 years resulted in additional loss of biomass, diversity and live coral
cover on many Caribbean reefs (Miller et al. 2009; Weil et al. 2009a; Weil and Rogers 2011; Bastidas et al. 2011; Weil
et al. 2017). },
keywords = {biodiversity, biomass, Caribbean, communities, Coral, coral diseases, coral reefs, diversity, Puerto Rico, reef, reefs},
pubstate = {published},
tppubtype = {article}
}
The ongoing deterioration and significant decline in live coral cover and diversity in coral reef communities
worldwide is strongly associated with increasing water temperatures linked to Global Climate Change, aided by
anthropogenic activities (Harvell et al. 2004, 2007, 2009; Weil and Rogers 2011; Maynard et al. 2016; Woodley et al.
2016). In the Wider Caribbean, major community structure and function decline was marked by two region-wide,
concurrent, highly virulent disease epizootics in the early 1980’s. These events almost wiped out two foundational
scleractinian species (Acropora palmata and A. cervicornis), and the keystone sea urchin Diadema antillarum. White
band disease (WBD) affected the acroporids and was caused by a complex of vibrio bacteria (Gil-Agudelo et al. 2006).
The Diadema mass mortality had all the trademark characteristics of a virulent, transmissible, bacterial or viral
infection, but the putative pathogen (pathogens) was never identified (Lessios 2016). Populations of both acroporids
and sea urchins suffered over 95% mortalities throughout the wider Caribbean (Gladfelter 1982; Lessios et al. 1984a,b;
Aronson and Precht 2001; Lessios 2016), followed by a cascade of ecological consequences (significant loss of live
coral cover, primary productivity, spatial complexity, biodiversity and fecundity; loss of ecological functions, increase
in algal cover and biomass, etc.), ending in a shift from coral- to algal-dominated communities and the loss of
ecological services to other tropical marine communities and to human beings (Aronson and Precht 2001; Weil and
Rogers 2011). Several other disease-induced mass mortalities of other cnidarians, as well as of massive, plate and
nodular reef-building genera, have in the last 30 years resulted in additional loss of biomass, diversity and live coral
cover on many Caribbean reefs (Miller et al. 2009; Weil et al. 2009a; Weil and Rogers 2011; Bastidas et al. 2011; Weil
et al. 2017).
worldwide is strongly associated with increasing water temperatures linked to Global Climate Change, aided by
anthropogenic activities (Harvell et al. 2004, 2007, 2009; Weil and Rogers 2011; Maynard et al. 2016; Woodley et al.
2016). In the Wider Caribbean, major community structure and function decline was marked by two region-wide,
concurrent, highly virulent disease epizootics in the early 1980’s. These events almost wiped out two foundational
scleractinian species (Acropora palmata and A. cervicornis), and the keystone sea urchin Diadema antillarum. White
band disease (WBD) affected the acroporids and was caused by a complex of vibrio bacteria (Gil-Agudelo et al. 2006).
The Diadema mass mortality had all the trademark characteristics of a virulent, transmissible, bacterial or viral
infection, but the putative pathogen (pathogens) was never identified (Lessios 2016). Populations of both acroporids
and sea urchins suffered over 95% mortalities throughout the wider Caribbean (Gladfelter 1982; Lessios et al. 1984a,b;
Aronson and Precht 2001; Lessios 2016), followed by a cascade of ecological consequences (significant loss of live
coral cover, primary productivity, spatial complexity, biodiversity and fecundity; loss of ecological functions, increase
in algal cover and biomass, etc.), ending in a shift from coral- to algal-dominated communities and the loss of
ecological services to other tropical marine communities and to human beings (Aronson and Precht 2001; Weil and
Rogers 2011). Several other disease-induced mass mortalities of other cnidarians, as well as of massive, plate and
nodular reef-building genera, have in the last 30 years resulted in additional loss of biomass, diversity and live coral
cover on many Caribbean reefs (Miller et al. 2009; Weil et al. 2009a; Weil and Rogers 2011; Bastidas et al. 2011; Weil
et al. 2017).
