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ABSTRACT
Background. Coral reefs are the most biodiverse ecosystems in the marine realm, and
they not only contribute a plethora of ecosystem services to other marine organisms,
but they also are beneficial to humankind via, for instance, their role as nurseries
for commercially important fish species. Corals are considered holobionts (host +
symbionts) since they are composed not only of coral polyps, but also algae, other
microbial eukaryotes and prokaryotes. In recent years, Caribbean reef corals, including
the once-common scleractinian coralAcropora cervicornis, have suffered unprecedented
mortality due to climate change-related stressors. Unfortunately, our basic knowledge
of the molecular ecophysiology of reef corals, particularly with respect to their complex
bacterial microbiota, is currently too poor to project how climate change will affect this
species. For instance, we do not know how light influences microbial communities of
A. cervicornis, arguably the most endangered of all Caribbean coral species. To this end,
we characterized the microbiota of A. cervicornis inhabiting water depths with different
light regimes.
Methods. Six A. cervicornis fragments from different individuals were collected at two
different depths (three at 1.5mand three at 11m) froma reef 3.2 kmoff the northeastern
coast of Puerto Rico. We characterized the microbial communities by sequencing the
16S rRNA gene region V4 with the Illumina platform.
Results. A total of 173,137 good-quality sequences were binned into 803 OTUs with a
97% similarity. We uncovered eight bacterial phyla at both depths with a dominance
of 725 Rickettsiales OTUs (Proteobacteria). A fewer number (38) of low dominance
OTUs varied by depth and taxa enriched in shallowwater corals includedProteobacteria
(e.g. Rhodobacteraceae and Serratia) and Firmicutes (Streptococcus). Those enriched in
deeper water corals featured different Proteobacterial taxa (Campylobacterales and
Bradyrhizobium) and Firmicutes (Lactobacillus).
Discussion. Our results confirm that the microbiota of A. cervicornis inhabiting the
northeastern region of Puerto Rico is dominated by a Rickettsiales-like bacterium and
that there are significant changes in less dominant taxa at different water depths. These
changes in less dominant taxamay potentially impact the coral’s physiology, particularly
with respect to its ability to respond to future increases in temperature and CO2.
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INTRODUCTION
Coral reefs cover only 0.1% of the ocean’s floor, yet they host one quarter of the total
biodiversity of the oceans. The variable shapes and heavily calcified skeletons that
characterize the corals themselves create a three-dimensional seascape that provides
myriad niches for organisms belonging to virtually all phyla of the animal kingdom,
as well as other eukaryotic kingdoms (Holbrook et al., 2015). Scleractinian corals also
harbor great prokaryotic diversity distributed across the coral’s many micro-niches,
e.g., within the mucus, soft tissue and skeleton (Ainsworth et al., 2015). The roles of
coral-associated microbes appear to be critical for coral homeostasis, health and protection
against disease, to the extent that the coral host and the associated microbial communities
are generally considered as a single functional unit, termed the coral ‘‘holobiont’’
(Thompson et al., 2014). Culture-dependent analyses of coral mucus revealed that bacterial
diversity is between 100 and 1,000 fold greater than that of the surrounding seawater
(Rosenberg et al., 2007).

Furthermore, coral-associated microbes tend to be species-specific, meaning that
individuals from the same coral species have similar bacterial and archaeal communities,
even when these individuals are several kilometers apart. In contrast, different coral species
living in close proximity have different bacterial communities (Morrow et al., 2012).
Compelling evidence suggests that most of the coral-associated bacteria are undescribed,
as many 16S rRNA sequences from scleractinian corals have a low match or no match at
all with 16S sequences available in the NCBI database (Rohwer et al., 2002; Frias-Lopez et
al., 2008; Sun, Anbuchezhian & Li, 2016). Additionally, coral-associated bacteria are rare
in the sense that many phylotypes are present in very low abundance (species relative
abundance <0.1%) in the coral holobiont which are likely to be functionally relevant as in
many other ecosystems (Lynch & Neufeld, 2015;Hausmann et al., 2016; Jousset et al., 2017).
In fact, the phenomena of a rare microbiota associated with corals has been observed in
different coral species across the world (Sunagawa et al., 2009; Lee et al., 2012; Bayer et al.,
2013; Ainsworth et al., 2015).

It is generally accepted that global climate change is having a great impact on ocean
waters. Shallow seawater has warmed by approximately 0.4 ◦C during the past five decades
while solar radiation is also on the rise, partly because of ozone layer depletion (Levitus
et al., 2009). Coral bleaching and disease have both been associated with increased water
temperature and solar radiation; therefore, areas within reefs of reducedwater temperatures
or light irradiance relative to the surroundings might be more supportive of coral health.
In fact, bleaching and bleaching-related mortality has been reported to be significantly
higher in coral from shallow waters than in corals at deeper waters (Bridge et al., 2014).

Coral-prokaryote symbioses are seemingly complex and sustained under a narrow range
of tolerance. For instance, a metagenomics analysis of the finger coral Porites compressa
revealed that colonies exposed to multiple stressors, including acute thermal stress,
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displayed rapid and significant shifts in the taxonomic structure of the coral-associated
microbiota with significant functional and physiological consequences (Vega Thurber
et al., 2009). Although revealing, this study was conducted by placing collected corals
in an aquarium under conditions that are unlikely to be observed naturally. Therefore,
exactly how environmental changes in temperature and solar radiation could impact
coral-prokaryote symbiosis is yet to be concisely determined. Nevertheless, because of
the large role played by light and temperature on coral health, we hypothesize that the
microbial community structure ofAcropora cervicornis at reef depthswith different light and
temperature regimes may be considerably different. Deep sequencing of 16S rRNA genes
with next-generation platforms has revealed a high bacterial diversity in invertebrate hosts
and, in the case of corals, the presence of bacterial genera frequently detected across their
geographic distribution (Ainsworth et al., 2015). The ever-increasing resolution provided
by recent sequencing technologies has revealed a diverse collection of microbes of low
relative abundance, which is termed the ‘‘rare biosphere’’ (Sogin et al., 2006).

With this study, we aimed to understand depth-related differences in microbial
assemblages in the scleractinian coral A. cervicornis in northeastern Puerto Rico. This
species was selected as the study model because it is emblematic of what is occurring in
Caribbean coral reef systems. This coral was once among the predominant reef-building
corals in the Caribbean, but over 97% of populations across the Caribbean have collapsed
due to environmental stressors such as temperature-induced bleaching and diseases
(Aronson & Precht, 2001). The dire situation faced by A. cervicornis across the Caribbean
region has led the US National Marine Fishery Service and the Union for Conservation
of Nature to list A. cervicornis on the US Endangered Species Act (ESA) and Red List
of Critically Threatened Species respectively. Hence, understanding how the natural
environmental variation due to differences in depth may affect the microbial assemblages
of A. cervicorniswill shed light on how this species will cope with future changes in seawater
quality brought on by climate change. To gain insight into how environmental differences
affect coral microbial communities, we sampled A. cervicornis specimens at two depths and
profiled their bacterial communities.

MATERIALS AND METHODS
Coral samples
Coral sampling was conducted within the La Cordillera Natural Reserve (LCNR),
specifically at the northern shores of Isla Palomino, which is located 3.2 km from the
northeastern coast of Puerto Rico (18◦21′10.8′′N 65◦34′24.4′′W, Fig. 1). The sampling
site is a low topographic relief, fringing reef with relatively clear waters year-around and
moderate to high wave energy depending on the water depth. Due to the reef’s northeastern
orientation, the site is exposed to easterly trade winds. In addition, given the absence of
perennial freshwater streams in Palomino Island, concomitant with the distance from
the Fajardo watershed, (the nearest freshwater system is ∼6 km west of the site), coastal
waters are mostly free of terrestrial sediments and thus have a horizontal water visibility
well over 10 m. The corals assemblage at the collection site is dominated by gorgonian
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Figure 1 Map illustrating the geographic position of Puerto Rico in the Caribbean Basin (A). Map illustrating the study site with respect to La
Cordillera Natural Reserve (B). Map illustrating the sampling site with respect to Palomino Island (18◦21′10.8′′N 65◦34′24.4′′W) (C). Picture of
a collected fragment of Acropora cervicornis prior to DNA extraction (D).

corals such as Gorgonia ventalina and Pseudopterogorgia aerosa and small colonies of the
scleractinian corals Orbicella annularis, Acropora palmata, Porites astreoides and spread
Acropora cervicornis clusters composed of several individuals. For a further description
of the study area please see Hernandez-Delgado et al. (2006), Mercado-Molina et al. (2015)
and Ruiz-Diaz et al. (2016).
Within this site, six A. cervicornis colonies were collected in August of 2015. Three of
them were collected at a depth of 1.5 m (hereafter ‘‘shallow’’ samples) and three from
11 m depth (hereafter ‘‘deep’’ samples). Shallow samples were collected from the reef
crest and were at least 5–6 m apart from each other. Corals of the reef crest are nearly
continuously exposed to relatively high water motion, and reef crest temperature averages
∼29 ◦C. Solar radiation was ∼11,203.55 Lux (SI unit of illuminance = 1 lumen/m2) at
the time of sampling. Deep samples were collected from at least 8–10 m apart within
the back-reef zone. This zone is characterized by lower water motion and wave action,
and average temperature is ∼28 ◦C. Solar radiation was ∼3,429.36 Lux at the time of
collection. Temperature and light intensities were estimated by placing one Hobo Pendant
temperature/light data logger 64k-UA-002-64 (Onset Company) per depth at the study
site at the time of collection. Although we do not have multiple log readings per site, a
previous study conducted by the current authors in the same collection sites found that
the temperature and light were significantly different between the two depths (Ruiz-Diaz
et al., 2016). Collected fragments were 6 cm in length from the tip of the colonies. Each
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fragment was individually placed in a sterile vial while underwater and the vials containing
the coral fragments were put in dry ice once they reached the surface. Samples were stored
at −80 ◦C until processing. Sampling was approved by the Department of Natural and
Environmental Resources of Puerto Rico permit number DRNA: 2016-IC-175 issued to
Carlos Toledo-Hernández.

DNA extraction
Coral samples were prepared for DNA extraction by scraping the surfaces of the tips
(top 1.5 cm) of the branches (see Fig. 1) with sterile scalpel blades. This resulted in
∼400 mg of mucus, tissue and some skeletal material for each samples. The scraped
material was subsequently processed using the PowerSoil DNA isolation kit (MO BIO,
Carlsbad, CA, USA) following the manufacturer’s specifications. To increase DNA yield, a
homogenization step was performed by mixing the lysate with beads using a PowerLyzerTM

24 Bench Top Bead-Based Homogenizer (MO BIO, Carlsbad, CA, USA) for 2 min at
2,000 rpm. Additionally, a second DNA extraction was done using the resultant pellet
formed after the first homogenization step of the DNA extraction. Both DNA extractions
(from the tissue and the tissue fragments in the bead tube) were pooled. Genomic DNA
quality control was assessed using agarose gel electrophoresis with DNA standards of
known molecular weight and concentration yielding 20–30 ng gDNA per sample. No
further DNA purification steps were performed as PowerSoil DNA isolation kits are known
to be effective at removing PCR inhibitors (Santos et al., 2012).

16S rRNA gene PCR and amplicon deposition
The V4 hypervariable region of the 16S ribosomal RNA was amplified by PCR using the
universal bacterial and archaeal primers: 515F (5′ GTGCCAGCMGCCGCGGTAA 3′) and
806R (5′ GGACTACHVGGGTWTCTAAT 3′) as used with the Earth Microbiome Project
(Caporaso et al., 2012). Amplification conditions were 1 cycle of 94 ◦C for 3 min, 35 cycles
of 94 ◦C for 45 s, 50 ◦C for 60 s, 72 ◦C for 90 s and a final extension of 72 ◦C for 10 min. The
six amplicons of ∼300 bp were barcoded to allow for sample multiplexing and paired-end
sequenced in the Illumina MiSeq platform at the Sequencing and Genotyping Facility of
the University of Puerto Rico. The resulting demultiplexed raw sequences per sample, as
well as the 803 16S rRNA gene sequence representatives of the operational taxonomic units
(OTUs) per sample were deposited in the NCBI BioProject ID PRJNA379103 with SRA
accession SRP102061.

Community profiling and bioinformatics
Demultiplexed reads underwent quality control using QIIME (Kuczynski et al., 2012),
selecting those reads with Phred scores > 20 (99% confidence) and lengths > 200 bp which
were searched for chimeras with the usearch61 hierarchical clustering method (Edgar,
2010). Sequences were binned into OTUs in QIIME using de novo OTU assignment
methods (thus the ‘‘de novo’’ ids for OTUs), with a 97% sequence similarity with
Greengenes core representative sequences Gg_13_8_99.taxonomy (McDonald et al.,
2011). The algorithm chooses an OTU ‘‘centroid sequence’’ to be the representative
sequence for each OTU. Sequence alignment was done using the Python nearest alignment
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space termination tool (PyNAST), and taxonomy assignment was done with the uclust
consensus taxonomy assigner using QIIME’s default settings (Kuczynski et al., 2012).
Chloroplast and mitochondria OTUs were removed from downstream analyses using the
script filter_taxa_from_otu_table available in QIIME (Kuczynski et al., 2012). Additionally,
stringent OTU filtering included the removal of singletons and OTUs with less than two
sequences per sample to eliminate overestimation caused by sequencing artifacts. Data
analyses including diversity estimates and taxonomic composition of the coral samples
was done using QIIME 1.9.1 (Kuczynski et al., 2012) after data was subsampled with a
rarefaction level of ∼28,000 sequences per sample, to mitigate bias in the analyses due
to differences in sampling depth. Alpha diversity was calculated using the phylogenetic
diversity metric of Faith (PD) to assess community diversity of the samples. Abundance
was not taken into account, but rather the branch lengths of the phylogenies connecting
all species to each community (Faith, 1992). Significant differences in the rarefaction
curves were calculated with a non-parametric two-sample t -test using 999 Monte Carlo
permutations using the QIIME script compare_alpha_diversity.py. Beta and alpha diversity
analyses, as well as core microbiome analyses, were done through QIIME (Kuczynski et al.,
2012). Taxa summaries were built by modifying the QIIME L2 and L6 taxonomy tables
with the R package reshape2 (Wickham, 2007).

To explain differences among microbial communities inhabiting shallow and deep
corals, we used principal coordinates analysis (PCoA) onUniFrac distances, a beta-diversity
measure that uses phylogenetic information to compare samples (Lozupone, Hamady &
Knight, 2006). Statistical analyses on beta diversity were made using ANOSIM, a non-
parametric statistical test that compares ranked beta diversity distances between different
group depths found in the mapping file and calculates a p-value based on the unweighted
Unifrac table used to generate the 3D PCoA plots (Kuczynski et al., 2012). The test was done
using the script compare_categories.py in QIIME (Kuczynski et al., 2012) with the Unifrac
distance matrix as the input file. Unweighted UniFrac PCoA biplots were visualized in the
EMPeror Visualization Program (Vazquez-Baeza et al., 2013). Additionally, beta diversity
analyses using non-metric multidimensional scaling (nMDS) ordinations of Bray Curtis
dissimilarity was done using distance metrics computed from the rarefied OTU table and
the metadata. We used nMDS ordination, achieved by the metaMDS wrapper function
from the vegan package in R (Oksanen et al., 2008). The ordination was applied such that
the data was scaled down to two dimensions.

The same analysis was done to understand the depth of diversity of the dominant
Rickettsiales OTUs. A species table was prepared, and OTUs were filtered to retain only
Rickettsiales OTUs; then, the resulting OTUs were compared between the two sampling
depths. To analyze species composition similarities across sites a Principal Coordinate
Analysis (PCoA) ordination was used. The PCoA was constructed using a UniFrac distance
matrix and visualized through QIIME. Additionally, we used a log-likelihood ratio to
test which OTUs changed significantly in relative abundance between the two depths.
This test compares the ratios of the OTU frequencies in the sample groups to an ‘‘extrinsic
hypothesis’’ that assumes that all sample groups have equal OTU frequencies, thus revealing
which taxa have significantly different OTU frequencies.
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An alpha rarefaction plot was built for richness estimations using the Chao 1 values.
These values represent the estimated true species richness of a sample and are calculated
through the workflow script for performing alpha rarefaction in QIIME that in turn
implements the Chao 1 abundance-based estimator (Chao, 1987). An alpha rarefaction
plot was then built for the Chao 1 richness estimations between microbial communities in
deep and shallow coral samples. Additionally, we used a non-parametric two-sample t -test
statistical with Monte Carlo permutations to compare the richness curves between shallow
and deep group samples.

OTUs that changed significantly between the two sample categories were found
using the script group_significance.py through the implementation of a G-test (log-
likelihood ratio test) that compares the frequency of OTUs across all samples and
finds those that are significantly different between both groups. Those significantly
different OTUs (p < 0.05) were grouped into an OTU table that underwent DESeq2
negative binomial Wald normalization for visualization purposes as the numbers
of individuals per sample greatly varied. This normalization step was implemented
in QIIME using the script normalize_table.py. The normalization in QIIME uses a
variance stabilization transformation function (VST ) that is applied to the count data,
as described in https://www.rdocumentation.org/packages/DESeq/versions/1.24.0/topics/
varianceStabilizingTransformation. The heatmap showing the taxa that significantly
differed in abundance between depths (p < 0.05) was built using the heatmap.3 function
in R (Zhao et al., 2014). Significant taxa were further highlighted using boxplots made
with the vegan package in R (Oksanen et al., 2008). A detailed repository and tutorial
with all the necessary intermediary files and scripts to serve as a guide to generate
the plots and perform the analyses used in this publication is available on GitHub:
https://github.com/meglab2017/The-microbial-biosphere-of-the-coral-Acropora-
cervicornis-in-Northeastern-Puerto-Rico.

RESULTS
Alpha and beta diversity estimates of corals at different depths
Coral individuals collected at 1.5 m (shallow samples 1, 2 and 3 hereafter) received more
solar radiation compared to those at 11 m (deep samples 1, 2 and 3 hereafter). The total
number of raw reads was 715,825 for the six samples. A total of 173,137 sequences were
used for analysis, in which the average ± standard deviation of the number of reads
was 29,135 ± 177.4 for the shallow samples and 28,578 ± 368 for deep samples. These
sequences correspond to a subsampling to a rarefaction level of 28,000 sequences, without a
replacement, thus guaranteeing an unbiased analysis (Table 1). The binning of the 173,137
high quality reads resulted in 803 operational taxonomic units (OTUs) (Table 1, Table S1).

nMDS ordination based on the relative dissimilarities of the samples (Bray Curtis) shows
that shallow samples have higher dispersion and are separated from the deep samples by axis
1 (Fig. 2A). PCoA revealed that the first principal component, sample origin, represented
the highest variance (PC1= 46.16%, Fig. 2B) indicating that bacterial communities from
coral samples partition according to sampling depth. Nonetheless, the non-parametric
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Table 1 The microbial biosphere of the coral Acropora cervicornis in Northeastern Puerto Rico. Number of sequences and OTU estimates across
samples.

Sample ID Depth (m) Total number of
raw sequences

Number of sequences
used in the analyses

Number of OTUs
(from a total of 803)

Shallow 1 1.5 171,429 29,076 435
Shallow 2 1.5 55,892 29,334 520
Shallow 3 1.5 29,886 28,994 492
Deep 1 11 283,069 28,308 542
Deep 2 11 77,290 28,428 413
Deep 3 11 98,259 28,997 386

two-sample t -test ANOSIM revealed non-significant differences (Rstat= 0.59; p= 0.221)
thus demonstrating that the similarity between groups is not significantly greater than
the similarity within each of the sample groups. In addition, alpha diversity measures
revealed no significant differences in phylogenetic diversity (t -stat= 0.548; p= 0.891,
Fig. 2C). When visualizing the most abundant bacterial taxa associated with each sample,
biplot indicated that Rickettsiales, Serratia marcescens and Lactococcus were most likely to
be found in shallow coral samples, while Prevotella, Lactobacillus and Campylobacterales
were more likely associated with the deep samples (Fig. 2B). Taken together, these results
indicate that the species diversity did not vary significantly within each sampling depth and
that there were only subtle differences in diversity between shallow and deep samples.

Taxonomic profiles of the A. cervicornis microbiome at different
depths
Weproceeded to explore the taxonomic profiles of theA. cervicornis-associatedmicrobiome
at different depths. At the phyla-level, our community profile analysis showed a total of eight
phyla, with a dominance of Proteobacteria (specifically from the order Rickettsiales) at both
sampling depths (95%; Fig. 3A, left panel). When these dominant Rickettsiales OTUs were
filtered out of our analysis, other taxa from the Proteobacteria phylum dominated at both
sampling depths (∼55%) followed by the phyla Firmicutes (∼35%), Bacteroidetes (∼5%)
and Actinobacteria (∼2%) (Fig. 3A, right panel). Despite the dominant taxa being shared
by corals from both sampling depths, some low dominance phyla appeared exclusively at
only one of the sampling depths. Two phyla, Planctomycetes and Nitrospira, were only
observed in the shallow samples, whereas Gemmatimonadetes and Verrucomicrobia were
uniquely observed in deep samples (Fig. 3A, right panel).
The community profile analysis at the genus level revealed from the rarefied analyses
revealed a total of 38 different genus-level OTUs, 19 of them were shared between shallow
and deep samples, while 8 and 11 were exclusively isolated from shallow and deep samples
respectively (Fig. 3B). Similar to the phylum-level analysis, most of these genus-level
OTUs belonged to Proteobacteria and Rickettisales (95%). A total of 725 Rickettsiales-like
OTUs were dominant across all samples independently of sampling depth. An analysis
of the 78 non-Rickettsiales OTUs (<5%) revealed that the taxa most likely to differ in
abundance between depths were low abundance Proteobacteria (Fig. 3B, left panel). In
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Figure 2 Non-metric multidimensional scaling (nMDS) ordinations of Bray Curtis dissimilarity be-
tween the bacterial communities inhabiting shallow and deep corals (A). Beta diversity 3D PCoA plot
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fact, nearly 60% of these were Haemophilus, Acinetobacter, Rhodobacteraceae, Serratia,
Pseudomonas, Campylobacterales or other unclassified Proteobacteria (Fig. 3B, left panel).
The other dominant phylum in the non-Rickettsiales group was Firmicutes (∼18%), with
the most dominant genus being, Lactococcus and Peptostreptococcaceae mostly in the
shallow samples while Lactobacillus, Anaerococcus and Bacillus were most dominant in the
deep samples.

To gauge the diversity of the Rickettsiales-like OTUs, we performed a community
profile analysis comparing Rickettsiales-like OTUs within shallow and deep samples using
a rarefaction of 23,472 sequences (Fig. 4A). Out of the 725 Rickettsiales-like OTUs, a
single OTU was most dominant across all samples (Fig. 4A, denovo_0). Furthermore,
Rickettsiales richness was not significantly different between shallow and deep samples
(t -test= 1.16, p= 0.226, Fig. 4B). As shown in Fig. 4B, the curve becomes asymptotic as
the OTU number saturates, and each sample depth adds an increasingly smaller number
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Figure 3 Taxonomic profiles at the phyla-level (A) and genus-level (B). Panels depict OTU tables in-
cluding (‘‘All Taxa’’) and excluding Rickettsiales OTUs (‘‘Non-Rickettsiales Taxa’’).

of new OTUs, indicating adequate coverage for the environment. We did find that many
Rickettsiales OTUs differ significantly in abundance between shallow and deep samples.
For plotting purposes we selected those 44 OTUs whose p< 0.00001 (Fig. 4C).

Differences in the microbiome of A. cervicornis corals inhabiting
different depths
Once the microbial taxonomic profiles of A. cervicornis naturally inhabiting different
depths was established, we next focused our analysis on those OTUs present in all three
samples of one depth and absent in all the samples of the other depth (core depth analyses).
This analysis revealed that the taxa shared by all shallow samples were mainly Streptococcus,
Haemophillus, Paucibacter and Porphyromonas and in the deep samples the shared taxa were
dominated by Campylobacterales, Bradyrhizobium, and Lactobacillus. Overall, 15 OTUs
were plotted representing the core taxa, of these only four OTUs were shared between all
six coral samples with all other being shared between more than three samples (Fig. 5).
We then proceeded to determine which taxa changed significantly (selected OTUs with
p≤ 0.05) between shallow and deep samples by employing a log-likelihood ratio test. Upon
performing this analysis, we found that 38 OTUs varied significantly between shallow and
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Figure 4 Taxa summary of the OTUs classified as Rickettsiales showing a dominant OTU (denovo_0)
with a relative abundance of∼80% and other hundreds of rare OTUs (A). Chao1 richness index of
Rickettsiales populations between shallow and deep samples. Error bars represent standard deviation
(n = 3 biological replicates/depth) (B). Heatmap of the 41 significantly different Ricketsiales OTUs
(p < 0.00001) between shallow and deep water samples (C).
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Figure 5 Bacterial OTUs shared amongst three to six coral samples, highlighting core taxa at both
shallow and deep corals.
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Figure 6 Heatmap showing the 38 significantly different taxa between shallow and deep samples (A). Boxplots of taxa found to be differen-
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deep samples (Figs. 6A and 6B). Among the taxa that varied significantly between depths
we found unclassified Rhodobacteraceae, Lactococcus, Comamonadaceae and Serratia to
be more abundant in the shallow samples as compared to deep samples (Figs. 6A and 6B
top panel). Conversely, we found a significantly higher abundance of Campylobacterales
and Bradyrhizobium, L. plantarum and Erythrobacteraceae in the deeper coral samples
(Figs. 6A and 6B). Taken together, our data suggest that only low dominance taxa changed
significantly in abundance across depths.
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DISCUSSION
In this report, we have characterized themicrobial communities associated with individuals
of the coral A. cervicornis naturally inhabiting areas with different environmental
conditions. Individuals inhabiting different depths (and that are under different light
regimes) displayed homogeneity in the dominant microbiota. These results are consistent
with previous findings that characterize individual coral specimens from the same species
that even when collected from locations that are kilometers apart share most of the same
associated microbial species (Littman et al., 2009). In previous studies, acroporid corals
in particular, have displayed a dominance of Alpha-Proteobacterial Rickettsiales OTUs
spread throughout healthy and diseased populations (Casas et al., 2004). The widespread
and dominant Rickettsiales OTUs were confirmed in all the samples in this study with an
unprecedented dominance of 95%, mainly from a single OTU (80% dominant).

On the other hand, we did observe statistically significant depth-related differences in
the microbiota of A. cervicornis among taxa with less than 5% relative abundance. Amongst
taxa that were significantly different between depths, Serratia was shown to be significantly
more associated to shallow water samples. Serratia is known to be a human pathogen that
has also been shown to contribute to mortality in the common Caribbean elkhorn coral
Acropora palmata (Sutherland et al., 2011).

Coral samples from deeper waters displayed an abundance of Lactobacillus plantarum,
which has been isolated from the marine environment before and are known to produce
antimicrobial peptides that inhibit the growth of pathogens (Karthikeyan & Santosh, 2009).
Additionally, deep samples displayed a relatively high abundance of Bradhyrrizobium and
other bradhyrrizobiaceae OTUs, some of the most commonly occurring rhizobia that
form symbioses in the nodules of legume plants (Lema, Willis & Bourne, 2012). These
associations would appear to be responsible for increased nitrogen fixation at deeper
depths. Likewise, the significant abundance of Campylobacterales, well-known for their
metabolic influence in nitrogen cycling, may also contribute to increased nitrogen fixation
in corals inhabiting deeper waters (Kern & Simon, 2009).

Rare species have been increasingly recognized as drivers of key functions in aquatic
and terrestrial ecosystems despite their low abundance, as recently reported (Lynch &
Neufeld, 2015; Jousset et al., 2017). Low-abundance taxa found in coastal systems, such
as mangrove environments, were documented to be associated with key biogeochemical
functions, such as CO2 flux and oxidation–reduction potential; this suggests that the
metabolic activity of low-abundance microbes could serve as an early warning sign for
environmental change (Chambers et al., 2016). Additionally another recent study showed
the importance of low-abundance bacteria in peat soil microcosms being drivers of sulfate
reduction-dependent degradation of fermentation products (Hausmann et al., 2016). In
marine systems, rare taxa have been found to be more transcriptionally active (increasing
their ribosome content) despite low abundance (Hausmann et al., 2016) which could
well be similar in the coral holobiont. Nonetheless, experiments including single cell
genomic and transcriptomic sequencing on specific coral-associated taxa are needed,
especially those focused on furthering our knowledge of the microbiome associated with
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resilient A. cervicornis populations. This, coupled with physiology studies on the coral
holobiont, will allow for a better understanding on the conserved genomic, metabolic
and structural features that may be predictive of a physiological potential to resist climate
change-associated environmental fluctuations.

The taxonomic diversity of microbes in association with different coral species has
revealed a plethora of microbial functions important to the holobiont (Mayfield et al.,
2014; Cardini et al., 2015). Although the number of samples in our study is too small to
allow finding depth-related biomarkers, we have identified rare taxa significantly enriched
in each depth, including nitrogen fixers in the deep corals, opening new avenues for
research aiming at understanding how microbial communities and their metabolism relate
to coral colony resilience.

Efforts to recover endangered coral species are largely based on finding resilient
individuals that can be used for transplant restoration procedures (Van Katwijk et al.,
2015). Resilience may be at least partly conferred by the microbiota of those individuals,
and should be taken into account in these efforts. Characterizing the prokaryote microbiota
of individuals inhibiting different water depths, including the identification of taxa in corals
challenged with different light and temperature regimes, may help identify microorganisms
that contribute to fitness for growth and reproduction, thus offering insights thatmay prove
advantageous in coral restoration procedures.

CONCLUSIONS
Although numerous sequence-based surveys of coral-associated microbiota have come to
define common associations of the coral microbiota over time or geographical locations,
this is likely the first report of the microbiota inhabiting A. cervicornis in Puerto Rico.
Although we found only slight differences in the coral microbiota between depths,
these corresponded to rare taxa that can have important metabolic activities in the
coral holobiont. As sequencing prices continue to drop significantly and sequencing
depth increases, the taxonomic characterization of the overlooked and rare taxa of the
coral microbiota may become a useful and cheap approach to understand the microbial
contributions to coral homeostasis and shed light on how coral species will cope with
ongoing climate change.
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